22.设双曲线C:(a>0.b>0)的离心率为e.若准线l与两条渐近线相交于P.Q两点.F为右焦点.△FPQ为等边三角形. (1)求双曲线C的离心率e的值, (2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程. (文)在△ABC中.A点的坐标为(3.0).BC边长为2.且BC在y轴上的区间[-3.3]上滑动. (1)求△ABC外心的轨迹方程, (2)设直线l∶y=3x+b与(1)的轨迹交于E.F两点.原点到直线l的距离为d.求的最大值.并求出此时b的值. 查看更多

 

题目列表(包括答案和解析)

(理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.

(1)求双曲线C的离心率e的值;

(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点是F2(2,0),且b=
3
a

(1)求双曲线C的方程;
(2)设经过焦点F2的直线l的一个法向量为(m,1),当直线l与双曲线C的右支相交于A,B不同的两点时,求实数m的取值范围;并证明AB中点M在曲线3(x-1)2-y2=3上.
(3)设(2)中直线l与双曲线C的右支相交于A,B两点,问是否存在实数m,使得∠AOB为锐角?若存在,请求出m的范围;若不存在,请说明理由.

查看答案和解析>>

(理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.
(1)求双曲线C的离心率e的值;
(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.

查看答案和解析>>

(理)设双曲线C:(a>0,b>0)的离心率为e,若准线l与两条渐近线相交于P、Q两点,F为右焦点,△FPQ为等边三角形.
(1)求双曲线C的离心率e的值;
(2)若双曲线C被直线y=ax+b截得的弦长为求双曲线c的方程.

查看答案和解析>>


同步练习册答案