28.某学生为测定未知浓度的硫酸溶液.实验如下:用1.00mL待测硫酸配制100mL稀H2SO4溶液,以0.14mol·L-1的NaOH溶液滴定上述稀H2SO4 25.00mL.滴定终止时消耗NaOH溶液15.00mL. 该学生用标准0.14mol·L-1 NaOH溶液滴定硫酸的实验操作如下: A.用酸式滴定管取稀H2SO4 25.00mL.注入锥形瓶中.加入指示剂 B.用待测定的溶液润洗酸式滴定管 C.用蒸馏水洗干净滴定管 D.取下碱式滴定管用标准的NaOH溶液润洗后.将标准液注入碱式滴定管刻度“0 以上2-3cm处.再把碱式滴定管固定好.调节液面至刻度“0 或“0 刻度以下 E.检查滴定管是否漏水 F.另取锥形瓶.再重复操作一次 G.把锥形瓶放在滴定管下面.瓶下垫一张白纸.边滴边摇动锥形瓶直至滴定终点.记下滴定管液面所在刻度 (1)滴定操作的正确顺序是 DBA , (2)碱式滴定管用蒸馏水润洗后.未用标准液润洗导致滴定结果 (填“偏低 .“偏高 或“无影响 ). (3)如有1mol/L和0.1mol/L的NaOH溶液.应用 的NaOH溶液.原因是 . (4) 观察碱式滴定管读数时.若滴定前仰视.滴定后俯视.则结果会导致测得的稀H2SO4溶液浓度测定值 (填“偏低 .“偏高 或“无影响 ) (5)计算待测硫酸溶液的物质的量浓度 (计算结果到小数点后二位). 查看更多

 

题目列表(包括答案和解析)

(2012•湛江一模)某校从参加高三年级调研测式物理成绩40分以上(含40分)的学生中随机抽取60名,将其成绩分在[40,50)[50,60),[90,100]六段后得到如下频率分布表.
(1)求表中数据x、y、z的值;
 分组  频数  频率
[40,50)  6  0.10
[50,60)  9  0.15
[60,70)  9  0.15
[70,80)  z  x
[80,90)  y  0.25
[90,100)  3  0.05
 合计  60  1.00
(2)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.

查看答案和解析>>

(本小题满分分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ) 测得该年级所抽查的100名同学身高(单位:厘米) 频率分布直方图如右图:
(ⅰ) 统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值为165)作为代表.据此,计算这100名学生身高数据的期望及标准差(精确到0.1);
(ⅱ) 若总体服从正态分布,以样本估计总体,据此,估计该年级身高在范围中的学生的人数.
(Ⅲ) 如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表

 
身高达标
身高不达标
总计
积极参加体育锻炼
40
 
 
不积极参加体育锻炼
 
15
 
总计
 
 
100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K=,参考数据:
P(Kk)
0.40
0.25
0.15
0.10
0.05
0.025
k
0.708
1.323
2.072
2.706
3.841
5.024

查看答案和解析>>

某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分二层)从该年级的学生中共抽查100名同学.
(Ⅰ)求甲、乙两同学都被抽到的概率,其中甲为A类同学,乙为B类同学;
(Ⅱ)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如右图:
(ⅰ)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的期望μ及标准差φ(精确到0.1);
(ⅱ)若总体服从正态分布,以样本估计总体,据此,估计该年级身高在(158.6,181.4)范围中的学生的人数.
(Ⅲ)如果以身高达170cm作为达标的标准,对抽取的100名学生,得到下列联表:
体育锻炼与身高达标2×2列联表
身高达标 身高不达标 总计
积极参加体育锻炼 40
不积极参加体育锻炼 15
总计 100
(ⅰ)完成上表;
(ⅱ)请问有多大的把握认为体育锻炼与身高达标有关系?
参考公式:K2=
π(ac-bd)2
(a+b)(c+d)(a+c)(b+d)
,参考数据:
P(K2≥k) 0.40 0.25 0.15 0.10 0.05 0.025
k 0.708 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

为了解高中一年级学生身高情况,某校按10%的比例对全校700名高中一年级学生按性别进行抽样检查,测得身高频数分布表如下表1、表2.

表1:男生身高频数分布表

 

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

频数

2

5

14

13

4

2

 

表2:女生身高频数分布表

 

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

频数

1

7

12

6

3

1

 

(I)求该校男生的人数并完成下面频率分布直方图;

(II)估计该校学生身高在的概率;

(III)从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。

【解析】第一问样本中男生人数为40 ,

由分层抽样比例为10%可得全校男生人数为400

(2)中由表1、表2知,样本中身高在的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在的频率 

故由估计该校学生身高在的概率 

(3)中样本中身高在180185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图,故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率

由表1、表2知,样本中身高在的学生人数为:5+14+13+6+3+1=42,样本容量为70 ,所以样本中学生身高在

的频率-----------------------------------------6分

故由估计该校学生身高在的概率.--------------------8分

(3)样本中身高在180185cm之间的男生有4人,设其编号为①②③④ 样本中身高在185190cm之间的男生有2人,设其编号为⑤⑥从上述6人中任取2人的树状图为:

--10分

故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率

 

查看答案和解析>>

(10分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测

试,将所得数据整理后,画出了频率分布直方图(如上图),图中从左到右各小长方形面积之

比为2:4:17:15:9:3,第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?

(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?

 

 

 

查看答案和解析>>


同步练习册答案