题目列表(包括答案和解析)
(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,.
(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.
(Ⅰ)判断函数是否是集合中的元素,并说明理由;
(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;
(本小题共14分)
已知函数与的图象相交于,,,分别是的图象在两点的切线,分别是,与轴的交点.
(I)求的取值范围;
(II)设为点的横坐标,当时,写出以为自变量的函数式,并求其定义域和值域;
(III)试比较与的大小,并说明理由(是坐标原点).
(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数(是常实数).
(1)若函数的定义为R,求的值域;
(2)若存在实数t使得是奇函数,证明的图像在图像的下方.
(本题满分14分)本题共有2个小题,第1小题满分6分,第2个小题满分8分。
某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.
(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该储油罐的建造费用最小时的的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com