题目列表(包括答案和解析)
(本小题满分14分)
已知函数f(x)=,g(x)=alnx,aR。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a(0,+)时, (a)1.
(本小题满分14分)
已知函数f(x)=,g(x)=alnx,aR。
若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
设函数h(x)=f(x)- g(x),当h(x)存在最小之时,求其最小值(a)的解析式;
对(2)中的(a),证明:当a(0,+)时, (a)1.
、(本小题满分14分)
已知函数
(1)画出函数在的简图;
(2)写出函数的最小正周期和单调递增区间;并求:当x为何值时,函数有最大值?最大值是多少?
(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状。
((本小题满分14分)
已知函数是函数的极值点。
(Ⅰ)当时,求a的值,讨论函数的单调性;
(Ⅱ)当R时,函数有两个零点,求实数m的取值范围.
(Ⅲ)是否存在这样的直线,同时满足:
①是函数的图象在点处的切线
②与函数 的图象相切于点,
如果存在,求实数b的取值范围;不存在,请说明理由。
.(本小题满分14分)已知函数对任意实数均有,当时,是正比例函数,当时,是二次函数,且在时取最小值。
(1)证明:;
(2)求出在的表达式;并讨论在的单调性。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com