(本题满分18分.其中第1小题4分.第2小题7分.第3小题7分.) 如图.已知圆与轴负半轴的交点为. 由点出发的射线的斜率为.且为有理数. 射线与圆相交于另一点 (1)当时.试用表示点的坐标, (2)当时.试证明:点一定是单位圆上的有理点,(说明:坐标平面上.横.纵坐标都为有理数的点为有理点.我们知道.一个有理数可以表示为.其中.均为整数且.互质) (3)定义:实半轴长.虚半轴长和半焦距都是正整数的双曲线为“整勾股双曲线 . 当时.是否能构造“整勾股双曲线 .它的实半轴长.虚半轴长和半焦距的长恰可由点的横坐标.纵坐标和半径的数值构成?若能.请尝试探索其构造方法,若不能.试简述你的理由. 查看更多

 

题目列表(包括答案和解析)

(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)

一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图所示,坐标以已知条件为准),表示青蛙从点到点所经过的路程。

(1) 若点为抛物线准线上

一点,点均在该抛物线上,并且直线

过该抛物线的焦点,证明.

(2)若点要么落在所表示的曲线上,

要么落在所表示的曲线上,并且,

试写出(不需证明);

(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本题满分18分,其中第1小题4分,第2小题6分,第,3小题8分)
一青蛙从点开始依次水平向右和竖直向上跳动,其落点坐标依次是,(如图所示,坐标以已知条件为准),表示青蛙从点到点所经过的路程。
(1) 若点为抛物线准线上
一点,点均在该抛物线上,并且直线
过该抛物线的焦点,证明.
(2)若点要么落在所表示的曲线上,
要么落在所表示的曲线上,并且,
试写出(不需证明);
(3)若点要么落在所表示的曲线上,要么落在所表示的曲线上,并且,求的表达式.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

现有变换公式可把平面直角坐标系上的一点变换到这一平面上的一点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程,并求出其两个焦点经变换公式变换后得到的点的坐标;

(2) 若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点. 求(1)中的椭圆在变换下的所有不动点的坐标;

(3) 在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

查看答案和解析>>

(本题满分18分,其中第1小题6分,第2小题4分,第3小题8分)

定义变换可把平面直角坐标系上的点变换到这一平面上的点.特别地,若曲线上一点经变换公式变换后得到的点与点重合,则称点是曲线在变换下的不动点.

(1)若椭圆的中心为坐标原点,焦点在轴上,且焦距为,长轴顶点和短轴顶点间的距离为2. 求该椭圆的标准方程. 并求出当时,其两个焦点经变换公式变换后得到的点的坐标;

(2)当时,求(1)中的椭圆在变换下的所有不动点的坐标;

(3)试探究:中心为坐标原点、对称轴为坐标轴的双曲线在变换

)下的不动点的存在情况和个数.

 

查看答案和解析>>


同步练习册答案