17.已知a.b.c为△ABC的三条边.且a:b:c=2:3:4.则△ABC各边上的高之比为 . 查看更多

 

题目列表(包括答案和解析)

已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC解析式为y=-2x+6,精英家教网将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.
(1)求直线AD解析式;
(2)动点P以每秒1个单位的速度,从点B出发沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

已知:如图,Rt△ABC中,∠ACB=90°,AC=BC,将直角三角板中45°角的顶点放在点C处,并将三角板绕点C旋转,三角板的两边分别交AB边于D、E两点(点D在点E的左侧,并且精英家教网点D不与点A重合,点E不与点B重合),设AD=m,DE=x,BE=n.
(1)判断以m、x、n为三边长组成的三角形的形状,并说明理由;
(2)当三角板旋转时,找出AD、DE、BE三条线段中始终最长的线段,并说明理由.

查看答案和解析>>

已知△ABC的三条边长分别为a、b、c,且满足关系:2b(c+2b)+(2c+a)(2c-a)=3(b+c)2-4bc,试判断△ABC的形状,并说明理由.

查看答案和解析>>

已知:如图,在平面直角坐标系中,△ABC为等腰三角形,直线AC解析式为y=-2x+6,将△AOC沿直线AC折叠,点O落在平面内的点E处,直线AE交x轴于点D.
(1)求直线AD解析式;
(2)动点P以每秒1个单位的速度,从点B出发沿着x轴正方向匀速运动,点Q是射线CE上的点,且∠PAQ=∠BAC,设P运动时间为t秒,求△POQ的面积S与t之间的函数关系式;
(3)在(2)的条件下,直线CE上是否存在一点F,使以点F、A、D、P为顶点的四边形是平行四边形?若存在,求出t值及Q点坐标;若不存在,说明理由.

查看答案和解析>>

已知抛物线y=x2-2(a+b)x+c2,其中a,b,c分别是三角形ABD的三边.
①求证:该抛物线与x轴必有两个交点;
②如图,设直线数学公式与抛物线交于E、F,与y轴交于点M,抛物线与y轴交于点N,若抛物线对称轴为直线x=2a,△MNE与△MNF面积之比为2:1,求证:△ABC为等腰直角三角形;
③在②的条件下,当S△ABC=2时,设抛物线与x轴交于P、Q,问:是否存在过P、Q两点,且与Y轴相切的圆?若存在,求圆心的坐标;若不存在,说明理由.

查看答案和解析>>


同步练习册答案