解:... ∴ ∴ .设 .∴ 时.与的夹角为.∴ 的取值范围是 查看更多

 

题目列表(包括答案和解析)

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

a
b
是两个互相垂直的单位向量,已知向量
m
=k
a
+
b
n
=
a
+k
b
,(k>0)
且向量
m
n
夹角θ的余弦值为f(k)

(1)求f(k)的表达式.
(2)求f(k)的值域及夹角θ=60°时的k值.
(3)在(1)的条件下解关于k的不等式:f[f(k)]<
-3ak2+(a2+4)k
k4+6k2+1
,(a∈R)

查看答案和解析>>

a
b
是两个互相垂直的单位向量,已知向量
m
=k
a
+
b
n
=
a
+k
b
,(k>0)
且向量
m
n
夹角θ的余弦值为f(k)

(1)求f(k)的表达式.
(2)求f(k)的值域及夹角θ=60°时的k值.
(3)在(1)的条件下解关于k的不等式:f[f(k)]<
-3ak2+(a2+4)k
k4+6k2+1
,(a∈R)

查看答案和解析>>

解答题:解答应写出文字说明、证明过程或演算步骤。

已知△OFQ的面积为,且

(1)

<m<,求向量夹角θ的取值范围

(2)

设以O为中心,F为焦点的双曲线经过点Q(如图),若,当取最小值时,求此双曲线的方程。

查看答案和解析>>


同步练习册答案