已知定点及椭圆.过点的动直线与该椭圆相交于两点 (1)若线段中点的横坐标是.求直线的方程, (2)在轴上是否存在点.使为常数?若存在.求出点的坐标,如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ) 求椭圆及其“伴随圆”的方程;

(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

 

查看答案和解析>>

(本小题满分14分)

       给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程;

       (Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.

查看答案和解析>>

(本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

       (Ⅰ)求椭圆及其“伴随圆”的方程

       (Ⅱ)试探究y轴上是否存在点(0, ,使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

((本小题满分14分)

给定椭圆  ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足

(Ⅰ)求椭圆及其“伴随圆”的方程

(Ⅱ)试探究y轴上是否存在点(0, ),使得过点作直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.若存在,请求出的值;若不存在,请说明理由。

 

查看答案和解析>>

(本小题满分14分)已知动圆过定点,且与直线相切,椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上.
(1)求动圆圆心的轨迹的方程及椭圆的方程;
(2)若动直线与轨迹处的切线平行,且直线与椭圆交于两点,试求当面积取到最大值时直线的方程.

查看答案和解析>>


同步练习册答案