29. t℃时.将1mol N2和3 mol H2通入体积为2L的恒温恒容密闭容器中.发生如下反应:N2(g) + 3H2(g) 2NH3(g),△H<0..2min后反应达到平衡.此时测得NH3的物质的量为0.2mol.请填写下列空白: (1)从反应开始至达到化学平衡.生成NH3的平均反应速率为 , 平衡时N2转化率为 . (2)下列叙述能证明该反应已经达到化学平衡状态的是 . A.H2的体积分数不再发生变化 B.容器内气体原子总数不再发生变化 C.容器内压强不再变化 D.相同时间内消耗n mol N2的同时消耗2n mol NH3 (3)反应达平衡后.以下操作将引起平衡向正反应方向移动.并能提高N2转化率的是: A.向容器中通入少量N2 B.向容器中通入少量H2 C.使用催化剂 D.降低温度 (4)维持上述恒温恒容条件步变.若起始加入a mol N2.b mol H2.c mol NH3.反应向逆方向进行.平衡时NH3的物质的量仍然为0.2mol.则c的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵A=
2,1
3,0
的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
x=t
y=1+2t
(t为参数)和圆C的极坐标方程:ρ=2
2
sin(θ+
π
4
)

(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

本题设有(1)(2)(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)已知矩阵M=
1a
b1
N=
c2
0d
,且MN=
20
-20

(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.
(2)在直角坐标系xoy中,直线l的参数方程为
x=3-
2
2
t
y=
5
-
2
2
t
(t为参数).在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2
5
sinθ

(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线l交于点A、B,若点P的坐标为(3,
5
)

求|PA|+|PB|.
(3)已知函数f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
01
10
,N=
0-1
10

(Ⅰ)求矩阵NN;
(Ⅱ)若点P(0,1)在矩阵M对应的线性变换下得到点P′,求P′的坐标.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,直线l的参数方程是
x=t
y=2t+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的极坐标方程是ρ=2cosθ(Ⅰ)在直角坐标系xOy中,求圆C的直角坐标方程
(Ⅱ)求圆心C到直线l的距离.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-1|
(Ⅰ)解不等式f(x)>2;
(Ⅱ)求函数y=f(-x)+f(x+5)的最小值.

查看答案和解析>>

精英家教网本题有(1),(2),(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑.
(1)选修4-2:矩阵与变换
如图所示:△OAB在伸缩变换M作用下变为△OA1B1
(i)求矩阵M的特征值及相应的特征向量;
(ii)求逆矩阵M-1以及(M-120
(2)选修4-4:坐标系与参数方程.
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
(θ为参数),曲线C2的参数方程为
x=2t
y=t+1
(t为参数)
(i)若将曲线C1与C2上各点的横坐标都缩短为原来的一半,分别得到曲线C1和C2,求出曲线C1和C2的普通方程;
(ii)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求证:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求实数m的取值范围.

查看答案和解析>>


同步练习册答案