21. 如图.已知圆定点A(1.0).为圆上一动点.点在上.点在上.且满足.点的轨迹为曲线. (1)求曲线的方程, (2)若过定点(0.2)的直线交曲线于不同的两点G.H.且满足的取值范围 . 查看更多

 

题目列表(包括答案和解析)

如图,已知圆C:,定点A(,0),M为圆C上一动点,点N在AM上,点P在 CM上,且满足,点P的轨迹为曲线E,

(1)   求曲线E 的方程;

(2)   当为钝角,求点P的横坐标的取值范围。

 

 

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+y2=1(a>1)的上顶点为A,离心率为
6
3
,若不过点A的动直线l与椭圆C相交于P、Q两点,且
AP
AQ
=0

(Ⅰ)求椭圆C的方程;
(Ⅱ)求证:直线l过定点,并求出该定点N的坐标.

查看答案和解析>>

如图,已知直线
l
 
1
:y=2x+m(m<0)
与抛物线C1:y=ax2(a>0)和圆C2x2+(y+1)2=5都相切,F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点作抛物线C1的切线l,直线l交y轴于点B,以FA,FB为邻边作平行四边形FAMB,证明:点M在一条定直线上.

查看答案和解析>>

如图,已知F1、F2分别为椭圆C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦点,其中F1也是抛物线C2x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=
5
3

(1)求椭圆C1的方程;
(2)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB上取一点Q,满足:
AP
=-λ
PB
AQ
QB
(λ≠0且λ≠±1),
求证:点Q总在某条定直线上.

查看答案和解析>>

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点为F1,F2,其上顶点为A.已知△F1AF2是边长为2的正三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记
MQ
=-λ•
QN
若在线段MN上取一点R,使得
MR
=λ•
RN
,试判断当直线l运动时,点R是否在某一定直线上运动?若在,请求出该定直线的方程;若不在,请说明理由.

查看答案和解析>>


同步练习册答案