(1)当0<t≤10时. 是增函数.且f(10)=240 当20<t≤40时.是减函数.且f(20)=240 所以.讲课开始10分钟.学生的注意力最集中.能持续10分钟.(3)当0<t≤10时.令.则t=4 当20<t≤40时.令.则t≈28.57 则学生注意力在180以上所持续的时间28.57-4=24.57>24 从而教师可以第4分钟至第28.57分钟这个时间段内将题讲完. 查看更多

 

题目列表(包括答案和解析)

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).

(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;

(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t∈R).
(1)当t=4,x∈[1,2],且F(x)=g(x)-f(x)有最小值2时,求a的值;
(2)当0<a<1,x∈[1,2]时,有f(x)≥g(x)恒成立,求实数t的取值范围.

查看答案和解析>>

已知,点A(s,f(s)), B(t,f(t))

  (I) 若,求函数的单调递增区间;

(II)若函数的导函数满足:当|x|≤1时,有||≤恒成立,求函数的解析表达式;

(III)若0<a<b, 函数处取得极值,且,证明:不可能垂直.

查看答案和解析>>

函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时为增函数,且f(1)=0。

(1)求关于t的方程f(2t+5)=0的解;

(2)求不等式f[x(x-)]<0的解集。

 

 

 

查看答案和解析>>


同步练习册答案