5. .得.即. 七个学习小组的人数:.......中位数为. 查看更多

 

题目列表(包括答案和解析)

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

解:(Ⅰ)设,其半焦距为.则

   由条件知,得

   的右准线方程为,即

   的准线方程为

   由条件知, 所以,故

   从而,  

(Ⅱ)由题设知,设

   由,得,所以

   而,由条件,得

   由(Ⅰ)得.从而,,即

   由,得.所以

   故

查看答案和解析>>

把曲边梯形拆分成一些小曲边梯形,再对每个小曲边梯形“以直代曲”,即                ,得到每个小曲边梯形面积的    值,对这些值     ,就可得曲边梯形的面积的近似值.

      

查看答案和解析>>

把曲边梯形拆分成一些小曲边梯形,再对每个小曲边梯形“以直代曲”,即                ,得到每个小曲边梯形面积的    值,对这些值     ,就可得曲边梯形的面积的近似值.    

查看答案和解析>>

(2013•菏泽二模)已知函数①y=sinx+cosx,②y=2
2
sinxcosx,则下列结论正确的是(  )

查看答案和解析>>


同步练习册答案