题目列表(包括答案和解析)
已知椭圆:的离心率为,右焦点到直线的距离为.
(1)求椭圆的方程;
(2)过椭圆右焦点F2斜率为()的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为,求证:为定值.
已知椭圆:的离心率为,左焦点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线交于不同的、两点,且线段的中点在圆 上,求的值.
已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线与轴相交于定点.
已知椭圆:的离心率为,右焦点为,且椭圆上的点到点距离的最小值为2.
⑴求椭圆的方程;
⑵设椭圆的左、右顶点分别为,过点的直线与椭圆及直线分别相交于点.
(ⅰ)当过三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求的面积.
已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆C的方程;
(2)设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;
(3)在(2)的条件下,证明直线与轴相交于定点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com