已知实数x.y满足x2+y2≤5.求f(x,y)=3|x+y|+|4y+9|+|7y-3x-18|的最大值与最小值. 查看更多

 

题目列表(包括答案和解析)

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

(1)若点A(a,b)(其中a≠b)在矩阵M=对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为,它与曲线为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:,曲线C2的参数方程为:(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>


同步练习册答案