某项选拔共有四轮考核.每轮设有一个问题.能正确回答问题者进入下一轮考核.否则被淘汰.已知某选手能正确回答第一.二.三.四轮问题的概率分别为.且各轮问题能否正确回答互不影响. (1)求该选手进入第四轮才被淘汰的概率, (2)求该选手至多进入第三轮考核的概率. 查看更多

 

题目列表(包括答案和解析)

(本题满分10分)

某小组有5名女生和4名男生,现从中任选3人去参加一项公益活动.

(1)求所选3人中恰有一名男生的概率:

(2)设所选3人中男生人数为,求的分布列与期望.

查看答案和解析>>

(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为  (I)求该小组中女生的人数;   (II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。

查看答案和解析>>

(本小题满分12分)数学试题中共有10道选择题,每道选择题都有4个选项,其中有且仅有一个是正确的,评分标准规定:“每题只选1项,答对得5分,不答或答错得0分”,某考生每道题都给出了一个答案,已确定有6道题的答案是正确的,而其余题中,有两道题都可判断出两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只能乱猜,试求出该考生:

(1)得50分的概率;

(2)得多少分的可能性最大?

 

查看答案和解析>>

在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:

(1)选择题得满分(50分)的概率;

(2)选择题所得分数的数学期望。

【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:

第二问中,依题意,该考生得分的范围为{35,40,45,50}         

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                            

得分为40分的概率为: 

同理求得,得分为45分的概率为: 

得分为50分的概率为:

得到分布列和期望值。

解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为

所以得分为50分的概率为:                   …………5分

(2)依题意,该考生得分的范围为{35,40,45,50}            …………6分

得分为35分表示只做对了7道题,其余各题都做错,

所以概率为                              …………7分

得分为40分的概率为:     …………8分

同理求得,得分为45分的概率为:                     …………9分

得分为50分的概率为:                      …………10分

所以得分的分布列为

35

40

45

50

 

数学期望

 

查看答案和解析>>

(本小题满分12分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为

(Ⅰ)求该小组中女生的人数;

(Ⅱ)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望.

查看答案和解析>>


同步练习册答案