知. 查看更多

 

题目列表(包括答案和解析)

(Ⅰ)已知函数f(x)=
x
x+1
.数列{an}满足:an>0,a1=1,且
an+1
=f(
an
)
,记数列{bn}的前n项和为Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求数列{bn}的通项公式;并判断b4+b6是否仍为数列{bn}中的项?若是,请证明;否则,说明理由.
(Ⅱ)设{cn}为首项是c1,公差d≠0的等差数列,求证:“数列{cn}中任意不同两项之和仍为数列{cn}中的项”的充要条件是“存在整数m≥-1,使c1=md”.

查看答案和解析>>

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面积S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

()(本小题满分12分)

三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.

 (Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.

查看答案和解析>>

()(本小题满分12分)已知椭圆C: 的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1是,坐标原点O到直线l的距离为.

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?

若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案