..两边平方得. 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,连接椭圆C的四个顶点得到的四边形的面积为4.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△ABO的面积最大?若存在,求出点M的坐标及相对应的△ABO的面积;若不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系xOy中,已知椭圆C:(a>b>0)的离心率e=,连接椭圆C的四个顶点得到的四边形的面积为4.
(1)求椭圆C的方程;
(2)在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△ABO的面积最大?若存在,求出点M的坐标及相对应的△ABO的面积;若不存在,请说明理由.

查看答案和解析>>

70、在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图1所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图2所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是
S42=S12+S22+S32

查看答案和解析>>

如图,在边长为12的正方形A1 AAA1′中,点B、C在线段AA′上,且AB = 3,BC = 4,作BB1AA1,分别交A1A1′、AA1′于点B1P;作CC1AA1,分别交A1A1′、AA1′于点C1Q;将该正方形沿BB1CC1折叠,使得AA1′ 与AA1重合,构成如图所示的三棱柱ABCA1B1C1,在三棱柱ABCA1B1C1中, (Ⅰ)求证:AB⊥平面BCC1B1;  (Ⅱ)求面PQA与面ABC所成的锐二面角的大小.(Ⅲ)求面APQ将三棱柱ABCA1B1C1分成上、下两部分几何体的体积之比.

 


查看答案和解析>>

在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用表示三个侧面面积,表示截面面积,那么类比得到的结论是____________.

 

查看答案和解析>>


同步练习册答案