18.解:(1)焦点.过抛物线的焦点且倾斜角为的直线方程是 查看更多

 

题目列表(包括答案和解析)

(2012•眉山二模)过抛物线x=
14
y2的焦点且倾斜角为45°的直线方程为
x-y-1=0
x-y-1=0

查看答案和解析>>

已知双曲线的中心在原点,焦点在x轴上,离心率为2,过其右焦点且倾斜角为45°的直线被双曲线截得的弦MN的长为6.
(Ⅰ)求此双曲线的方程;
(Ⅱ)若直线l:y=kx+m与该双曲线交于两个不同点A、B,且以线段AB为直径的圆过原点,求定点Q(0,-1)到直线l的距离d的最大值,并求此时直线l的方程.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3

(I)若原点到直线x+y-b=0的距离为
2
,求椭圆的方程;
(II)设过椭圆的右焦点且倾斜角为45°的直线l和椭圆交于A,B两点.
(i)当|AB|=
3
,求b的值;
(ii)对于椭圆上任一点M,若
OM
OA
OB
,求实数λ,μ满足的关系式.

查看答案和解析>>

(1)已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A,B两点,为坐标原点,求证:
OA
OB
为定值;
(2)由(1)可知:过抛物线的焦点F的动直线l交抛物线于A,B两点,存在定点P,使得
PA
PB
为定值.请写出关于椭圆的类似结论,并给出证明.

查看答案和解析>>

已知过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心离e的取值范围是
 

查看答案和解析>>


同步练习册答案