题目列表(包括答案和解析)
如图,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.
(Ⅰ)证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?若能,请指出点N的位置,并加以证明;若不能,请说明理由.
【解析】第一问:取AC中点F,连结OF、FB.∵F是AC的中点,O为CE的中点,
∴OF∥EA且OF=且BD=
∴OF∥DB,OF=DB,
∴四边形BDOF是平行四边形。
∴OD∥FB
第二问中,当N是EM中点时,ON⊥平面ABDE。 ………7分
证明:取EM中点N,连结ON、CM, AC=BC,M为AB中点,∴CM⊥AB,
又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,
∴CM⊥面ABDE,∵N是EM中点,O为CE中点,∴ON∥CM,
∴ON⊥平面ABDE。
1 |
2 |
1 |
2 |
1 |
2 |
如图所示,四面体被一平面所截,截面是一个平行四边形.求证:;
【答案】(理)证明:EH∥FG,EH面,面
EH∥面,又CD面,EH∥CD, 又EH面EFGH,CD面EFGH
EH∥BD
【解析】本试题主要是考查了空间四面体中线面位置关系的判定。
要证明线面平行可知通过线线平行,结合判定定理得到结论。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com