题目列表(包括答案和解析)
命题:“若空间两条直线,分别垂直平面,则”学生小夏这样证明:
设,与面分别相交于、,连结、,
, …①
∴ …………②
∴ ………………………③
这里的证明有两个推理,即:①②和②③. 老师评改认为小夏的证明推理不正确,这两个推理中不正确的是 .
如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.
(Ⅰ)证明:BD⊥PC;
(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.
【解析】(Ⅰ)因为
又是平面PAC内的两条相较直线,所以BD平面PAC,
而平面PAC,所以.
(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,
所以是直线PD和平面PAC所成的角,从而.
由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积
在等腰三角形AOD中,
所以
故四棱锥的体积为.
【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com