题目列表(包括答案和解析)
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.
(1)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“M类数列”,则数列也是“M类数列”;
(3)若数列满足,,为常数.求数列前项的和.并判断是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列的相邻两项、,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈NN*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3·2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t·2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com