逆命题:若或.则数列是“M类数列 查看更多

 

题目列表(包括答案和解析)

对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.

(1)若,数列是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;

(2)证明:若数列是“M类数列”,则数列也是“M类数列”;

(3)若数列满足为常数.求数列项的和.并判断是否为“M类数列”,说明理由;

(4)根据对(2)(3)问题的研究,对数列的相邻两项,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈NN*都成立,我们称数列{cn}是“M类数列”.

(1)若an=2n,bn=3·2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;

(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;

(3)若数列{an}满足a1=2,an+an+1=3t·2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;

(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>

对于给定数列{cn},如果存在实常数p,q使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“M类数列”.
(1)若an=2n,bn=3•2n,n∈N*,数列{an}、{bn}是否为“M类数列”?若是,指出它对应的实常数p,q,若不是,请说明理由;
(2)证明:若数列{an}是“M类数列”,则数列{an+an+1}也是“M类数列”;
(3)若数列{an}满足a1=2,an+an+1=3t•2n(n∈N*),t为常数.求数列{an}前2009项的和.并判断{an}是否为“M类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{an}的相邻两项an、an+1,提出一个条件或结论与“M类数列”概念相关的真命题,并探究其逆命题的真假.

查看答案和解析>>


同步练习册答案