∵l1⊥l2.∴l2的方程为由得 查看更多

 

题目列表(包括答案和解析)

已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件
x-y≥0
x+y≥0
所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且S△OMN=
1
2
(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件数学公式所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且数学公式(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件
x-y≥0
x+y≥0
所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且S△OMN=
1
2
(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

已知直线l1:x-y=0,l2:x+y=0,点P是线性约束条件所表示区域内一动点,PM⊥l1,PN⊥l2,垂足分别为M、N,且(O为坐标原点).
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)是否存在过点(2,0)的直线l与(Ⅰ)中轨迹交于点A、B,线段AB的垂直平分线交y轴于Q点,且使得△ABQ是等边三角形.若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=
3
2

(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案