题目列表(包括答案和解析)
组号 | 分组 | 频数 | 频率 |
1 | [200,210) | 8 | 0.1 |
2 | [210,220) | 9 | 0.1125 |
3 | [220,230) | ① | |
4 | [230,240) | 10 | ② |
5 | [240,250) | 15 | 0.1875 |
6 | [250,260) | 12 | 0.15 |
7 | [260,270) | 8 | 0.10 |
8 | [270,280) | 4 | 0.05 |
组号 | 分组 | 频数 | 频率 |
1 | [200,210) | 8 | 0.1 |
2 | [210,220) | 9 | 0.1125 |
3 | [220,230) | ① | |
4 | [230,240) | 10 | ② |
5 | [240,250) | 15 | 0.11875 |
6 | [250,260) | 12 | 0.15 |
7 | [260,270) | 8 | 0.10 |
8 | [270,280) | 4 | 0.05 |
组号 | 分组 | 频数 | 频率 |
1 | [200,210) | 8 | 0.1 |
2 | [210,220) | 9 | 0.1125 |
3 | [220,230) | ① | |
4 | [230,240) | 10 | ② |
5 | [240,250) | 15 | 0.11875 |
6 | [250,260) | 12 | 0.15 |
7 | [260,270) | 8 | 0.10 |
8 | [270,280) | 4 | 0.05 |
已知函数.()
(1)若在区间上单调递增,求实数的取值范围;
(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。
解:(1)在区间上单调递增,
则在区间上恒成立. …………3分
即,而当时,,故. …………5分
所以. …………6分
(2)令,定义域为.
在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.
∵ …………9分
① 若,令,得极值点,,
当,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;
当,即时,同理可知,在区间上递增,
有,也不合题意; …………11分
② 若,则有,此时在区间上恒有,从而在区间上是减函数;
要使在此区间上恒成立,只须满足,
由此求得的范围是. …………13分
综合①②可知,当时,函数的图象恒在直线下方.
已知点(),过点作抛物线的切线,切点分别为、(其中).
(Ⅰ)若,求与的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;
(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值
(Ⅰ)由可得,. ------1分
∵直线与曲线相切,且过点,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,则的斜率,
∴直线的方程为:,又,
∴,即. -----------------7分
∵点到直线的距离即为圆的半径,即,--------------8分
故圆的面积为. --------------------9分
(Ⅲ)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即, ………10分
∴
,
当且仅当,即,时取等号.
故圆面积的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com