题目列表(包括答案和解析)
(14分)已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆经过圆C: 的圆心C。
(Ⅰ)求椭圆的方程;
(Ⅱ) 设是椭圆上的一点,过点的直线交轴于点,交轴于点,若,求直线的斜率.
已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆于两点,且的中点坐标为,设为椭圆的右顶点,为椭圆上两点,且,,三者的平方成等差数列,则直线和斜率之积的绝对值是否为定值,若是,请求出定值;若不是,请说明理由.
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为.
(1)求椭圆的方程;
(2)过点作直线交于、两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,右准线的方程为,倾斜角为的直线交椭圆于两点,且的中点坐标为,求椭圆的方程;
已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)
(Ⅰ)求椭圆的方程
(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com