C. D. 查看更多

 

题目列表(包括答案和解析)

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C.选修4-4:坐标系与参数方程
在极坐标系下,已知圆O:和直线
(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.
D.选修4-5:不等式证明选讲
对于任意实数,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B错;≥4,故A错;由基本不等式得,即,故C正确;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D错.故选C.

查看答案和解析>>

定义域为R的函数满足,且当时,,则当时,的最小值为( )

A B C D

 

查看答案和解析>>

.过点作圆的弦,其中弦长为整数的共有  (  )    

A.16条          B. 17条        C. 32条            D. 34条

 

查看答案和解析>>

一、选择题:(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空题:(每小题4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答题:(共76分,以下各题为累计得分,其他解答请相应给分)

17.解:(I)

          

        由,得

        又当,得

       

       (Ⅱ)当

        即时函数递增。

        故的单调增区间为

18.解:(I)各取1个球的结果有(红,红1)(红,红2)(红,白1)(红,白2)(红,黑)

(白,红2)(白,红2)(白,白1)(白,白2)(白,黑)(白,红1)(白,红2

(白,白1)(白,白2)(白,黑)(黑1,红1)(黑1,红2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,红1)(黑2,红2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,红1

(黑3,红2)(黑3,白1)(黑3,白2)(黑3,黑)

等30种情况

其中恰有1白1黑有(白,黑)…(黑3,白2)8种情况,

故1白1黑的概率为

   (Ⅱ)2红有2种,2白有4种,2黑有3种,

故两球颜色相同的概率为

   (Ⅲ)1红有1×3+2×5=13(种),2红有2种,

故至少有1个红球的概率为

19.解:(I)侧视图   (高4,底2

       

   (Ⅱ)证明,由面ABC得AC,又由俯视图知ABAC,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,为直线PC与底面ABC所成的角

中,PA=4,AC=

20.解:(I)由题意设C的方程为,得

   

    设直线的方程为,由

    ②代入①化简整理得  

    因直线与抛物线C相交于不同的两点,

    故

    即,解得时仅交一点,

   (Ⅱ)设,由由(I)知

   

   

   

21.解:(I)   由

于是

切线方程为,即

   (Ⅱ)令,解得

    ①当时,即时,在内,,于是在[1,4]内为增函数。从而

    ②当,即,在内,,于是在[1,4]内为减函数,从而

    ③当时,内递减,在内递增,故在[1,4]上的最大值为的较大者。

    由,得,故当时,

    当时,

22.解:(I)设的首项为,公差为d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        当时,,当时,

       

        于是

        设存在正整数,使对恒成立

        当时,,即

        当时,

       

        时,时,,当时,

        存在正整数或8,对于任意正整数都有成立。

www.ks5u.com

 

 


同步练习册答案