(Ⅱ)设椭圆E的左焦点为F.点P为圆C上异于A1.A2的动点.过原点O作直线PF的垂线交直线于点Q.判断直线PQ与圆C的位置关系.并给出证明. 查看更多

 

题目列表(包括答案和解析)

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)过点P(1,
3
2
),且离心率e=
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点F的动直线交椭圆于点A、B,设椭圆的左顶点为C连接CA、CB且交直线l:x=m于M、N,若以MN为直径的圆恒过右焦点F,求m的值.

查看答案和解析>>

已知左焦点为F(-1,0)的椭圆过点E(1,).过点P(1,1)分别作斜率为k1,k2的椭圆的动弦AB,CD,设M,N分别为线段AB,CD的中点.
(1)求椭圆的标准方程;
(2)若P为线段AB的中点,求k1
(3)若k1+k2=1,求证直线MN恒过定点,并求出定点坐标.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,P是椭圆上一点,且∠F1PF2=60°,设
|PF1|
|PF2|

(1)求椭圆C的离心率e和λ的函数关系式e=f(λ)
(2)若椭圆C的离心率e最小,且椭圆C上的动点M到定点N(0,
1
2
)
的最远距离为
5
,求椭圆C的方程.

查看答案和解析>>

如图,设点P是椭圆E:
x2
4
+y2=1
上的任意一点(异于左,右顶点A,B).
(1)若椭圆E的右焦点为F,上顶点为C,求以F为圆心且与直线AC相切的圆的半径;
(2)设直线PA,PB分别交直线l:x=
10
3
与点M,N,求证:PN⊥BM.

查看答案和解析>>


同步练习册答案