解:设(其中).图象上的两端点为 查看更多

 

题目列表(包括答案和解析)

对函数,设点是图象上的两端点.为坐标原点,且点满足.点在函数的图象上,且为实数),则称的最大值为函数的“高度”,则函数在区间上的“高度”为        

 

查看答案和解析>>

对函数y=f(x)(x1≤x≤x2),设点A(x1,y1)、B(x2,y2)是图象上的两端点,O为坐标原点,且点N满足
ON
=λ
OA
+(1-λ)
OB
,λ≥0,点M(x,y)在函数y=f(x)的图象上,且x=λx1+(1-λ)x2,则称|MN|的最大值为函数的“高度”,则函数f(x)=x2-2x-1在区间[-1,3]上的“高度”为
4
4

查看答案和解析>>

对函数y=f(x)(x1≤x≤x2),设点A(x1,y1)、B(x2,y2)是图象上的两端点.O为坐标原点,且点N
O
N=λ
O
A+(1-λ)
O
B满足.点M(x,y)在函数y=f(x)的图象上,且x=λx1+(1-λ)x2(λ为实数),则称|MN|的最大值为函数的“高度”,则函数f(x)=2cos(2x-
π
4
)
在区间[
π
8
8
]
上的“高度”为
4
4

查看答案和解析>>

对函数y=f(x)(x1≤x≤x2),设点A(x1,y1)、B(x2,y2)是图象上的两端点.O为坐标原点,且点N
O
N=λ
O
A+(1-λ)
O
B满足.点M(x,y)在函数y=f(x)的图象上,且x=λx1+(1-λ)x2(λ为实数),则称|MN|的最大值为函数的“高度”,则函数f(x)=2cos(2x-
π
4
)
在区间[
π
8
8
]
上的“高度”为______.

查看答案和解析>>

对函数y=f(x)(x1≤x≤x2),设点A(x1,y1)、B(x2,y2)是图象上的两端点,O为坐标原点,且点N满足=+(1-λ),λ≥0,点M(x,y)在函数y=f(x)的图象上,且x=λx1+(1-λ)x2,则称|MN|的最大值为函数的“高度”,则函数f(x)=x2-2x-1在区间[-1,3]上的“高度”为   

查看答案和解析>>


同步练习册答案