解:(1)在(0.+上为减函数.证明如下: 设 ∴ 即在(0.+上为减函数. (2)不等式即 ① 当时 解集为 ② 当时解集为 (3)若在(0.+)上恒成立.即 ∴ ∵ 的最小值为4 ∴ 解得 查看更多

 

题目列表(包括答案和解析)

探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数(x>0)在区间(0,2)上递减,则在________上递增;
(2)当x=________时,(x>0)的最小值为_________;
(3)试用定义证明(x>0)在区间(0,2)上递减;
(4)函数(x<0)有最值吗?是最大值还是最小值?此时x为何值?
解题说明:第(1)(2)两题的结果直接填写在横线上;第(4)题直接回答,不需证明。

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

8.5
5
4.17
4.05
4.005
4
4.005
4.102
4.24
4.3
5
5.8
7.57

请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数,(x>0)在区间(0,2)上递减,则在        上递增;
(2)当x=      时,,(x>0)的最小值为        
(3)试用定义证明,(x>0)在区间(0,2)上递减;
(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
(5)解不等式.
解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。

查看答案和解析>>

探究函数,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

请观察表中y值随x值变化的特点,完成下列问题:

(1)若函数,(x>0)在区间(0,2)上递减,则在         上递增;

(2)当x=       时,,(x>0)的最小值为        

(3)试用定义证明,(x>0)在区间(0,2)上递减;

(4)函数,(x<0)有最值吗?是最大值还是最小值?此时x为何值?

(5)解不等式.

解题说明:(1)(2)两题的结果直接填写在横线上;(4)题直接回答,不需证明。

查看答案和解析>>


同步练习册答案