设椭圆=1(a>b>0)的焦点为F1.F2.P是椭圆上任一点.若∠F1PF2的最大值为. (Ⅰ)求椭圆的离心率, (Ⅱ)设直线l与椭圆交于M.N两点.且l与以原点为圆心.短轴长为直径的圆相切.已知的最大值为4.求椭圆的方程和直线l的方程. 查看更多

 

题目列表(包括答案和解析)

设椭圆=1(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),右准线l交x轴于点A,且.

(1)试求椭圆的方程;

(2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形DMEN面积的最大值和最小值.

(文)已知函数f(x)=x3+bx2+cx,b、c∈R,且函数f(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减.

(1)若b=-2,求c的值;

(2)求证:c≥3;

(3)设函数g(x)=f′(x),当x∈[-1,3]时,g(x)的最小值是-1,求b、c的值.

查看答案和解析>>

设椭圆=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.

(1)求直线l和椭圆的方程;

(2)求证:点F1(-2,0)在以线段AB为直径的圆上.

查看答案和解析>>

设椭圆=1(a>b>0)的两焦点为F1、F2,若在椭圆上存在一点P,使·=0,求椭圆的离心率e的取值范围.

查看答案和解析>>

设椭圆+=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.

(1)求直线l和椭圆的方程;

(2)求证:点F1(-2,0)在以线段AB为直径的圆上;

(3)在直线l上有两个不重合的动点C、D,以CD为直径且过点F1的所有圆中,求面积最小的圆的半径长.

查看答案和解析>>

设椭圆=1(a>b>0)的离心率为e=.

(1)椭圆的左、右焦点分别为F1、F2,A是椭圆上的一点,且点A到此两焦点的距离之和为4,求椭圆的方程.

(2)求b为何值时,过圆x2+y2=t2上一点M(2,)处的切线交椭圆于Q1、Q2两点,而且OQ1⊥OQ2?

查看答案和解析>>


同步练习册答案