题目列表(包括答案和解析)
(本小题满分14分)
如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
(本小题满分14分)
已知直线经过椭圆S:的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意,求证:.
(本小题满分14分)
如图7,已知椭圆:的离心率为,以椭圆的左顶点为
圆心作圆:,设圆与椭圆交于点与点.
(1)求椭圆的方程;
(2)求的最小值,并求此时圆的方程;
(3)设点是椭圆上异于的任意一点,且直线分别与轴交于点
,为坐标原点,求证:为定值.
(本小题满分14分)
如图,已知椭圆过点(1,),离心率为 ,左右焦点分别为.点为直线:上且不在轴上的任意一点,直线和与椭圆的交点分别为和为坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线、斜率分别为.
(ⅰ)证明:
(ⅱ )问直线上是否存在一点,使直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
(本小题满分14分)
如图,已知椭圆,是椭圆的顶点,若椭圆的离心率,且过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)作直线,使得,且与椭圆相交于两点(异于椭圆的顶点),设直线和直线的倾斜角分别是,求证:.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com