13.求曲线y = sinx在点x=π处的切线方程. 提示:根据导数的几何意义求出曲线y = sinx在点x=π处的切线斜率. 解:∵y′=cosx.∴切线的斜率k== -1. ∴切线方程为 y- 0=- (x- π).即x+y-π=0. 查看更多

 

题目列表(包括答案和解析)

坐标系与参数方程选讲.
已知曲线C:
x=cosθ
y=sinθ
(θ为参数).
(1)将C参数方程化为普通方程;
(2)若把C上各点的坐标经过伸缩变换
x′=3x
y′=2y
后得到曲线C,求曲线C上任意一点到两坐标轴距离之积的最大值.

查看答案和解析>>

选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2cosα
y=2+2sinα
(其中α为参数),M是曲线C1上的动点,且M 是线段OP 的中点,(其中O点为坐标原点),P 点的轨迹为曲线C2,直线l 的方程为ρsin(θ+
π
4
)=
2
,直线l 与曲线C2交于A,B两点.
(1)求曲线C2的普通方程;
(2)求线段AB的长.

查看答案和解析>>

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

选修4-4:坐标系与参数方程过P(2,0)作倾斜角为α的直线l与曲线E:
x=cosθ
y=
2
2
sinθ
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.

查看答案和解析>>

以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)+
2
,曲线C1的参数方程为
x=3cosα
y=sinα
(α为参数).
(Ⅰ)若把曲线C1上每一点横坐标不变,纵坐标变为原来的3倍,再把得到的图象向右平移一个单位,得到曲线C2,求曲线C2的普通方程;
(Ⅱ)在第(1)问的条件下,若直线l与曲线C2相交于M,N两点,求M,N两点间的距离.

查看答案和解析>>


同步练习册答案