题目列表(包括答案和解析)
函数f(x)=(a,b是非零实常数),满足f(2)=1,且方程f(x)=x有且仅有一个解。
(1)求a、b的值;
(2)是否存在实常数m,使得对定义域中任意的x,f(x)+f(m–x)=4恒成立?为什么?
(3)在直角坐标系中,求定点A(–3,1)到此函数图象上任意一点P的距离|AP|的最小值。
函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的高调函数。如果定义域为的函数是奇函数,当时,,且为上的4高调函数,那么实数的取值范围是
A. . B.
C. D.
函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的高调函数。如果定义域为的函数是奇函数,当时,,且为上的4高调函数,那么实数的取值范围是
A. . B.
C. D.
函数的定义域为,若存在非零实数使得对于任意,有,且,则称为上的高调函数。如果定义域为的函数是奇函数,当时,,且为上的4高调函数,那么实数的取值范围是( )
A. B. C. D.
函数的定义域为,并满足以下三个条件:(i)对任意,有;
(ii)对任意,有;(iii)。
(1) 求的值;
(2)求证:在上是单调增函数;
(3)若,且,求证:。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com