(18) 本题满分14分 (Ⅰ) 解:共线 ∴ ∴--------------------------- (II) .令得 所以函数图像的对称中心的坐标是 ----------------------- (19) 本题满分14分 (I) 证明:如图.取PD的中点E.连结AE.EN 则有EN//CD// AM. 且EN=CD=AB=MA. ∴四边形AMNE是平行四边形. ∴MN//AE. ∵平面.平面. ∴MN//平面PAD.----------------- (II)解:∵PA⊥平面ABCD.∴PA⊥AD. 又∠PDA=45°.E是PD中点. ∴∠EAD=45°又MN//AE ∴与平面所成的角等于∠EAD. ∴与平面所成的角等于45°------- (20) 本题满分14分 (Ⅰ)证明:. . 又由 所以数列是首项为.公比为的等比数列------- (Ⅱ)解:. . 所以的值为3.4-------------------- (21)本题满分15分 (Ⅰ) 解:,因为.所以.的极小值为----------------- (Ⅱ) 解: 若时.当时在上递增. 当时<在上递减.所以的最大值为.令, 若时.当时在上递增.所以的最大值为 .又.所以无解. 由上可在知----------------- (22) 本题满分15分 .---------- (Ⅱ) 解: B.设.. 设BC的斜率为k,则 . 又.C A . 直线AC的方程为. 令 AD: 同理CD:.联立两方程得D 令递减.所以.当时.最大为8 所以.BC的方程为即----------- 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)第26届世界大学生夏季运动会将于2011年11月12日到23日在深圳举行 ,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”。

(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望。

 

查看答案和解析>>

(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点的坐标为,点的坐标为,其中.设.
(1)若,求方程在区间内的解集;
(2)若点是过点且法向量为的直线上的动点.当时,设函数的值域为集合,不等式的解集为集合. 若恒成立,求实数的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量的值. 当时,试写出一个条件,使得函数满足“图像关于点对称,且在取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)

查看答案和解析>>

.(本题满分18分)

本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.

设二次函数,对任意实数,有恒成立;数列满足.

(1)求函数的解析式和值域;

(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,

并说明理由;

(3)已知,是否存在非零整数,使得对任意,都有

 恒成立,若存在,

求之;若不存在,说明理由.

 

查看答案和解析>>

(本题满分12分)为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:

分组

频数

频率

60.5~70.5

 

0.16

70.5~80.5

10

 

80.5~90.5

18

0.36

90.5~100.5

 

 

合计

50

 

(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;

(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;

(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?

 

 

 

查看答案和解析>>

(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)

设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.

(1)若,求证:该数列是“封闭数列”;

(2)试判断数列是否是“封闭数列”,为什么?

(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.

查看答案和解析>>


同步练习册答案