19. 如图.PA⊥ABCD.ABCD是矩形.PA=AB=1.PD与平面ABCD所成角是30°.点F是PB的中点.点E在 边BC上移动. (I)点E为BC的中点时.试判断EF与平面PAC的位置关系.并说明理由, (II)证明:无论点E在边BC的何处.都有PE⊥AF, (III)当BE等于何值时.二面角P-DE-A的大小为45°. 查看更多

 

题目列表(包括答案和解析)

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

 

 

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.

(1)证明:无论点E在BC边的何处,都有PE⊥AF;

(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

 

查看答案和解析>>

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

1.    (本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,

(1)    证明:AD⊥平面PAB

(2)    求异面直线PCAD所成的角的大小;

(3)    求二面角P—BD—A的大小.

 

查看答案和解析>>

1.    (本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,

(1)    证明:AD⊥平面PAB

(2)    求异面直线PCAD所成的角的大小;

(3)    求二面角P—BD—A的大小.

 

查看答案和解析>>


同步练习册答案