17.C(提示:根据勾股定理...) 查看更多

 

题目列表(包括答案和解析)

在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为,也可表示为,即由此推出勾股定理,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称撐拮种っ鲾.

(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等).(3分)

(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证3分)

(3)请你自己设计图形的组合,用其面积表达式验证:

4分).

查看答案和解析>>

我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为,即,由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”。
(1)请你用图(II)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a, 较小的直角边长都为b,斜边长都为c);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证:
(x+y)2=x2+2xy+y2
(3)请你自己设计图形的组合,用其面积表达式验证:
(a+b)(a+2b)=a2+3ab+2b2

查看答案和解析>>

在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:
(a+b)2,也可表示为:c2+4•(
1
2
ab),
即(a+b)2=c2+4•(
1
2
ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
精英家教网
(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.

查看答案和解析>>

在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:
(a+b)2,也可表示为:c2+4•(数学公式ab),
即(a+b)2=c2+4•(数学公式ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.

(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.

查看答案和解析>>

在学习勾股定理时,我们学会运用图(I)验证它的正确性;图中大正方形的面积可表示为:(a+b)2,也可表示为:c2+4·(ab),即(a+b)2=c2+4·(ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”。

(1)请你用图(II)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);
(2)请你用(III)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2
(3)请你自己设计图形的组合,用其面积表达式验证:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq。

查看答案和解析>>


同步练习册答案