题目列表(包括答案和解析)
(本小题12分)
已知函数.
(1)求证:不论为何实数总是增函数;
(2)确定的值,使为奇函数;
(3)当为奇函数时,求的值域.
(本小题满分12分)
已知函数f(x)=lg(ax-bx)(a>1>b>0).
(1)求y=f(x)的定义域;
(2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴;
(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.
(本小题满分12分)
设直线l与抛物线y2=2px(p>0)交于A、B两点,已知当直线l经过抛物线的焦点且与x轴垂直时,△OAB的面积为(O为坐标原点).
(Ⅰ)求抛物线的方程;
(Ⅱ)当直线l经过点P(a,0)(a>0)且与x轴不垂直时,
若在x轴上存在点C,使得△ABC为等边三角形,求a
的取值范围.
(本小题满分12分)已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为
(I)求,的值;
(II)上是否存在点P,使得当绕F转到某一位置时,有成立?
若存在,求出所有的P的坐标与的方程;若不存在,说明理由。
(本小题满分12分)
已知函数.
(Ⅰ)当时,使不等式,求实数的取值范围;
(Ⅱ)若在区间上,函数的图象恒在直线的下方,求实数的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com