③如果函数对任意的都满足.则函数是周期函数, 查看更多

 

题目列表(包括答案和解析)

如果函数f(x)=
1
3
x3-a2x
满足:对于任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤1恒成立,则a的取值范围是(  )
A、[-
2
3
3
2
3
3
]
B、(-
2
3
3
2
3
3
)
C、[-
2
3
3
,0)∪(0,
2
3
3
]
D、(-
2
3
3
,0)∪(0,
2
3
3
)

查看答案和解析>>

如果函数f (x)满足:对任意的实数 x,y都有 f ( x+y )=f ( x )•f ( y ) 且f ( 1 )=2,则
f(2)
f(1)
+
f(4)
f(2)
+
f(6)
f(3)
+
f(8)
f(4)
+…+
f(20)
f(10)
=
 

查看答案和解析>>

如果函数f(x)满足下列条件:
①对于任意x∈[0,1],f(x)≥0,且f(0)=0,f(1)=1;
②对于满足条件0≤x1≤1,0≤x2≤1,0≤x1+x2≤1的任意两个数x1,x2
都有f(x1+x2)≥f(x1)+f(x2).则称函数f(x)为Γ函数.
(Ⅰ)分别判断函数f1(x)=x与f2(x)=sin
π
2
x是否为Γ函数,并说明理由;
(Ⅱ)证明:对于任意的0≤x≤y≤1,有f(x)≤f(y);
(Ⅲ)不等式f(x)≤
3
2
x对于一切x∈[0,1]都成立吗?证明你的结论.

查看答案和解析>>

如果函数f(x)满足在集合N*上的值域仍是集合N*,则把函数f(x)称为N函数.例如:f(x)=x就是N函数.
(Ⅰ)判断下列函数:①y=x2,②y=2x-1,③y=[
x
]中,哪些是N函数?(只需写出判断结果);
(Ⅱ)判断函数g(x)=[lnx]+1是否为N函数,并证明你的结论;
(Ⅲ)证明:对于任意实数a,b,函数f(x)=[b•ax]都不是N函数.
(注:“[x]”表示不超过x的最大整数)

查看答案和解析>>

如果函数f(x)满足:对任意的实数n,m都有f(n+m)=f(n)+f(m)+12且f(n+m)=f(n)+f(m)+
1
2
f(
1
2
)=0,则f(1)+f(2)+f(3)+…+f(n)(n∈N*)等于(  )
A、n
B、n2
C、
n2
2
D、
n2
4

查看答案和解析>>

一、选择题:

1.D  2.A 3  B  4.D 5.A 6.D 7.B 8.C 9.A  10.B  11.A  12.B

二、填空题:

13.12          14.    15   3          16.,①②③④    

三、解答题:

17.解:法(1):①∵=(1+cosB,sinB)与=(0,1)所成的角为

与向量=(1,0)所成的角为                                                   

,即                                                   (2分)

而B∈(0,π),∴,∴,∴B=。                               (4分)

②令AB=c,BC=a,AC=b

∵B=,∴b2=a2+c2-2accosB=a2+c2-ac=,∵a,c>0。             (6分)

∴a2+c2,ac≤     (当且仅当a=c时等号成立)

∴12=a2+c2-ac≥                                           (8分)

∴(a+c)2≤48,∴a+c≤,∴a+b+c≤+=(当且仅当a=c时取等号)

故ΔABC的周长的最大值为。                                                          (10分)

法2:(1)cos<>=cos

,                                                                                   (2分)

即2cos2B+cosB-1=0,∴cosB=或cosB=-1(舍),而B∈(0,π),∴B=     (4分)

(2)令AB=c,BC=a,AC=b,ΔABC的周长为,则=a+c+

而a=b?,c=b?                                      (2分)

==

=                                (8分)

∵A∈(0,),∴A-

当且仅当A=时,。                                         (10分)

 18.解法一:(1)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC

(2)∵AB∥CD,∠BAD=120°,∴∠ADC=60°,又AD=CD=1

∴ΔADC为等边三角形,且AC=1,取AC的中点O,则DO⊥AC,又PA⊥底面ABCD,

∴PA⊥DO,∴DO⊥平面PAC,过O作OH⊥PC,垂足为H,连DH

由三垂成定理知DH⊥PC,∴∠DHO为二面角D-PC-A的平面角

由OH=,DO=,∴tan∠DHO==2

∴二面角D-PC-A的大小的正切值为2。

(3)设点B到平面PCD的距离为d,又AB∥平面PCD

∴VA-PCD=VP-ACD,即

  即点B到平面PCD的距离为

19.解:(1)第一和第三次取球对第四次无影响,计第四次摸红球为事件A

①第二次摸红球,则第四次摸球时袋中有4红球概率为

                                                                            (2分)

②第二次摸白球,则第四次摸球时袋中有5红2白,摸红球概率为

                                                                           (3分)

∴P(A)=,即第四次恰好摸到红球的概率为。(6分)(注:无文字说明扣一分)

(2)由题设可知ξ的所有可能取值为:ξ=0,1,2,3。P(ξ=0)=

P(ξ=1)=;P(ξ=2)=

P(ξ=3)=。故随机变量ξ的分布列为:

ξ

0

1

2

(10分)

P

∴Eξ=(个),故Eξ=(个)                                    (1

20.解:(1)

故数列是首项为2,公比为2的等比数列。

…………………………………………4分

(2)

②―①得,即

④―③得,即

所以数列是等差数列……………………9分

(3)………………………………11分

,则

…………13分

21.解:(1)设.

整理得AB:bx-ay-ab=0与原点距离,又

联立上式解得b=1,∴c=2,.∴双曲线方程为.

(2)设C(x1,y1),D(x2,y2)设CD中点M(x0,y0),

,∴|AC|=|AD|,∴AM⊥CD.

联立直线与双曲线的方程得,整理得(1-3k2)x2-6kmx-3m2-3=0,且.

,   

,∴AM⊥CD.

,整理得

且k2>0,,代入中得.

.

22.解:(1)∵(x)=3ax2+sinθx-2

由题设可知:∴sinθ=1。(2分)

从而a=,∴f(x)=,而又由f(1)=得,c=

∴f(x)=即为所求。                                                     (4分)

(2)(x)=x2+x-2=(x+2)(x-1)易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数。

(i)当m>1时,f(x)在[m,m+3]上递增。故f(x)max=f(m+3),f(x)min=f(m)

由f(m+3)-f(m)=(m+3)3+(m+3)2-2(m+3)-=3m2+12m+得-5≤m≤1。这与条件矛盾故舍。                                                                             (6分)

(ii)当0≤m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增。

∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max

又f(m+3)-f(m)=3m2+12m+=3(m+2)2->0(0≤m≤1),∴f(x)max=f(m+3)

∴|f(x1)-f(x2)| ≤f(x)max-f(x)min=f(m+3)-f(1) ≤f(4)-f(1)=恒成立

故当0≤m≤1原式恒成立。                                                                       (8分)

综上:存在m且m∈[0,1]合乎题意。                                                   (9分)

(3)∵a1∈(0,1,∴a2,故a2>2

假设n=k(k≥2,k∈N*)时,ak>2。则ak+1=f(ak)>f(2)=8>2

故对于一切n(n≥2,n∈N*)均有an>2成立。                                    (11分)

令g(x)=

=

当x∈(0,2)时(x)<0,x∈(2,+∞)时,(x)>0,

∴g(x)在x∈[2,+∞时为增函数。

而g(2)=8-8ln2>0,即当x∈[2,+∞时,g(x)≥g(2)>0恒成立。

∴g(an)>0,(n≥2)也恒成立。即:an+1>8lnan(n≥2)恒成立。

而当n=1时,a2=8,而8lna1≤0,∴a2>8lna1显然成立。

综上:对一切n∈N*均有an+1>8lnan成立。                             

 

 

 

 


同步练习册答案