解:(Ⅰ)首先... 1分 在上递增, , 的单调递增区间是.单调递减区间是. 3分 .而. 即. 5分 (Ⅱ)要证明即证明即证明恒成立. 令.则. 7分 在处取得极大值.也是最大值. .成立. 由此可得. 9分 于是 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)求在区间上的最大值;

(2)若函数在区间上存在递减区间,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在上存在递减区间,即上有解,即,即可,可得到。

解:(1), 

,解得                 ……………3分

上为增函数,在上为减函数,

            

 

 

 

 

 

.          …………6分

(2)

上存在递减区间,上有解,……9分

上有解,

所以,实数的取值范围为  

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>


同步练习册答案