已知=2.则式子sin-3sincos的值为 查看更多

 

题目列表(包括答案和解析)

已知某二次函数的图象与函数y=2x2的图象形状一样,开口方向相反,且其顶点为(-1,3),则此函数的解析式为(  )

A.y=2(x-1)2+3               B.y=2(x+1)2+3

C.y=-2(x-1)2+3             D.y=-2(x+1)2+3

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

已知f+1)=x+1,则f(x)的解析式为

[  ]

A.x2

B.x2+1(x≥1)

C.x2-2x+2(x≥1)

D.x2-2x(x≥1)

查看答案和解析>>

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x.则f(x)在R上的解析式是

[  ]

A.y=x(x-2)

B.y=x(|x|-2)

C.y=|x|(x-2)

D.y=|x|(|x|-2)

查看答案和解析>>

已知函数y=f(x)的图像关于点(-1,0)对称,且当x∈(0,+∞)时,,则当x∈(-∞,-2)时f(x)的解析式为

[  ]

A.

B.

C.

D.

查看答案和解析>>


同步练习册答案