又∵BD平面ABCD. ∴A1A⊥BD. ∵四边形ABCD为菱形.∴AC⊥BD. 查看更多

 

题目列表(包括答案和解析)

如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=
12
PD

(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.

查看答案和解析>>

精英家教网已知四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=120°,又PC⊥平面ABCD,PC=a,E是PA的中点.
(1)求证:平面EBD⊥平面ABCD;
(2)求直线PB与直线DE所成的角的余弦值;
(3)设二面角A-BE-D的平面角为θ,求cosθ的值.

查看答案和解析>>

(理)ABCD是直角梯形,∠ABC=∠BAD=90°,又SA⊥平面ABCD,SA=AB=BC=1,AD=
1
2
,面SCD与面SAB所成二面角的正切值为
2
2
2
2

查看答案和解析>>

如图,四棱锥P-ABCD中,底面ABCD是矩形,AB=
3
,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)若a=4,且PQ⊥QD,求二面角A-PD-Q的大小.

查看答案和解析>>

精英家教网如图,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.
(Ⅰ)若在边BC上存在一点Q,使PQ⊥QD,求a的取值范围;
(Ⅱ)当边BC上存在唯一点Q,使PQ⊥QD时,求二面角A-PD-Q的余弦值.

查看答案和解析>>


同步练习册答案