解析:(1)由.得... 2分 . ..数列的通项公式为, 4分 (2), 设 ① 5分 ② 6分 ①-②.得 . 8分 即数列的前项和为, (3)解法一:.不等式恒成立.即对于一切的恒成立. 10分 设. 11分 当时.由于对称轴.且 而函数在是增函数. 12分 不等式恒成立. 即当时.不等式对于一切的恒成立. 13分 解法二:.不等式恒成立.即对于一切的恒成立. 10分 11分 .. 12分 而 恒成立. 故当时.不等式对于一切的恒成立. 13分 查看更多

 

题目列表(包括答案和解析)

数列首项,前项和满足等式(常数……)

(1)求证:为等比数列;

(2)设数列的公比为,作数列使 (……),求数列的通项公式.

(3)设,求数列的前项和.

【解析】第一问利用由

两式相减得

时,

从而  即,而

从而  故

第二问中,     又为等比数列,通项公式为

第三问中,

两边同乘以

利用错位相减法得到和。

(1)由

两式相减得

时,

从而   ………………3分

  即,而

从而  故

对任意为常数,即为等比数列………………5分

(2)    ……………………7分

为等比数列,通项公式为………………9分

(3)

两边同乘以

………………11分

两式相减得

 

查看答案和解析>>

在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;

(2)求数列的通项公式,假设,试求数列的前项和

(3)若对一切恒成立,求的取值范围。

【解析】第一问中利用)同理得到

第二问中,由题意得到:

累加法得到

第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。

(1)同理得到             ……2分 

(2)由题意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>

已知数列的前项和为,且 (N*),其中

(Ⅰ) 求的通项公式;

(Ⅱ) 设 (N*).

①证明:

② 求证:.

【解析】本试题主要考查了数列的通项公式的求解和运用。运用关系式,表示通项公式,然后得到第一问,第二问中利用放缩法得到,②由于

所以利用放缩法,从此得到结论。

解:(Ⅰ)当时,由.  ……2分

若存在

从而有,与矛盾,所以.

从而由.  ……6分

 (Ⅱ)①证明:

证法一:∵

 

.…………10分

证法二:,下同证法一.           ……10分

证法三:(利用对偶式)设

.又,也即,所以,也即,又因为,所以.即

                    ………10分

证法四:(数学归纳法)①当时, ,命题成立;

   ②假设时,命题成立,即,

   则当时,

    即

故当时,命题成立.

综上可知,对一切非零自然数,不等式②成立.           ………………10分

②由于

所以

从而.

也即

 

查看答案和解析>>

已知数列的通项公式

,试通过计算的值,推测出的值。

【解析】本试题主要考查了数列通项公式的运用和归纳猜想思想的运用。由的通项公式得到,并根据结果可猜想

解:……………………2分

    …………4分

    …………6分

由此猜想,

 

查看答案和解析>>

已知函数,数列的项满足: ,(1)试求

(2) 猜想数列的通项,并利用数学归纳法证明.

【解析】第一问中,利用递推关系,

,   

第二问中,由(1)猜想得:然后再用数学归纳法分为两步骤证明即可。

解: (1) ,

,    …………….7分

(2)由(1)猜想得:

(数学归纳法证明)i) ,  ,命题成立

ii) 假设时,成立

时,

                              

综合i),ii) : 成立

 

查看答案和解析>>


同步练习册答案