题目列表(包括答案和解析)
(本小题14分)右图是一个直三棱柱(以为底面)
被一平面所截得到的几何体,截面为ABC.
已知.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1;
(2)证明BC⊥AC,求二面角B―AC―A1的大小;
(3)求此几何体的体积.
(本小题14分)右图是一个直三棱柱(以为底面)
被一平面所截得到的几何体,截面为ABC.
已知.
(1)设点O是AB的中点,证明:OC∥平面A1B1C1;
(2)证明BC⊥AC,求二面角B―AC―A1的大小;
(3)求此几何体的体积.
(本小题满分14分)
一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.
(Ⅰ)请画出该几何体的直观图,并求出它的体积;
(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;
(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值。
(本小题满分14分)如图(1),是直径的圆上一点,为圆O的切线,为切点,为等边三角形,连接交于,以为折痕将翻折到图(2)所示的位置,点P为平面ABC外的点.
(1)求证:异面直线和互相垂直;
(2)若为上一点,且,,求三棱锥的体积.
(本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)
A.(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,,PD=1,BD=8,求线段BC的长.
B.(选修4-2:矩阵与变换)
在直角坐标系中,已知椭圆,矩阵阵,,求在矩阵作用下变换所得到的图形的面积.
C.(选修4-4:坐标系与参数方程)
直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.
D.(选修4-5:不等式选讲)
设,求证:.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com