得.构成以为首项.为公比的等比数列.即: 6分 查看更多

 

题目列表(包括答案和解析)

为了了解已有沙漠面积1000万公顷的某地区沙漠面积的变化情况,环保监测部门进入了连续4年的观察,并将每年年底的观察结果记录如表甲.根据这些数据还可绘制曲线图乙.由此预测到该地区沙漠的面积将继续扩大.

表甲

图乙

(1)如果不采取任何措施,那么到第m年底,该地区沙漠面积变为多少公倾?

(2)如果第5年底后,采取引水和植树造林等措施,使沙漠化扩大趋势得以减缓.第6年开始的每一年年底观察得该地区沙漠面积比上一年增加数y(公顷)分别为:a6,a7,a8,…,an,而a6,a7,a8,…,an还构成首项a6=32,公差d=-8的递减等差数列.当沙漠化扩大趋势停止后(即an=0),每年改造18万公顷沙漠,那么第n年底,该地区沙漠的面积能减少到980万公顷?

查看答案和解析>>

(2006•蚌埠二模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)

查看答案和解析>>

(2005•静安区一模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理)设{an}的公差d(d>0)为已知常数,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?并请说明理由.
(4)(文)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y=f(x) 是数列的“保三角形”函数。

(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;

(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=  (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

 

查看答案和解析>>

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y="f(x)" 是数列的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)= (m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

查看答案和解析>>


同步练习册答案