题目列表(包括答案和解析)
在中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列
(Ⅰ)求角的大小;
(Ⅱ)若,求的值.
【解析】第一问中利用依题意且,故
第二问中,由题意又由余弦定理知
,得到,所以,从而得到结论。
(1)依题意且,故……………………6分
(2)由题意又由余弦定理知
…………………………9分
即 故
代入得
数列首项,前项和满足等式(常数,……)
(1)求证:为等比数列;
(2)设数列的公比为,作数列使 (……),求数列的通项公式.
(3)设,求数列的前项和.
【解析】第一问利用由得
两式相减得
故时,
从而又 即,而
从而 故
第二问中, 又故为等比数列,通项公式为
第三问中,
两边同乘以
利用错位相减法得到和。
(1)由得
两式相减得
故时,
从而 ………………3分
又 即,而
从而 故
对任意,为常数,即为等比数列………………5分
(2) ……………………7分
又故为等比数列,通项公式为………………9分
(3)
两边同乘以
………………11分
两式相减得
已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.
(1)求函数f(x)的表达式;
(2)若数列{an}满足a1=,an+1=f(an),bn=-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;
(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}为等比数列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)证明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
已知点(),过点作抛物线的切线,切点分别为、(其中).
(Ⅰ)若,求与的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;
(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值
(Ⅰ)由可得,. ------1分
∵直线与曲线相切,且过点,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,则的斜率,
∴直线的方程为:,又,
∴,即. -----------------7分
∵点到直线的距离即为圆的半径,即,--------------8分
故圆的面积为. --------------------9分
(Ⅲ)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即, ………10分
∴
,
当且仅当,即,时取等号.
故圆面积的最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com