题目列表(包括答案和解析)
(本小题满分14分)
已知f(x)=x2+bx+c为偶函数,曲线y=f(x)过点(2,5),g(x)=(x+a)f(x).
(1)求f(x)的解析式;
(2)若曲线y=g(x)有斜率为0的切线,求实数a的取值范围;
(3)若当x=1时,函数y=g(x)取得极值,确定y=g(x)的单调区间.
(本小题满分14分)
已知关于x的函数,其导函数.
(1)如果函数试确定b、c的值;
(2)设当时,函数的图象上任一点P处的切线斜率为k,若,求实数b的取值范围。
(本小题满分14分)已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
(本小题满分14分)已知f(x)是定义在( 0,+∞)上的增函数,
且f() = f(x)-f(y)
(1)求f(1)的值;
(2)若f(6)= 1,解不等式 f( x+3 )-f() <2
(本题满分14分)已知f(x)是定义在R上的奇函数,且x<0时,f(x)=x2+2x-3.
(1)求f(0),f(1); (2)求函数f(x)的表达式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com