6.若曲线 y=lnx+1的一条切线方程为 y=x+b,则b= . 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=a(x-
1
x
)-lnx

(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=
e
x
,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

已知函数f(x)=a(x-
1
x
)-lnx

(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=
e
x
,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围.

查看答案和解析>>

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足f(x)≤g(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=lnx,g(x)=1-
1
x

(1)试探求f(x)与g(x)是否存在“左同旁切线”,若存在,请求出左同旁切线方程;若不存在,请说明理由.
(2)设P(x1,f(x1)),Q(x2,f(x2))是函数f(x)图象上任意两点,0<x1<x2,且存在实数x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,证明:x1<x3<x2

查看答案和解析>>

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足f(x)≤g(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=lnx,g(x)=1-
(1)试探求f(x)与g(x)是否存在“左同旁切线”,若存在,请求出左同旁切线方程;若不存在,请说明理由.
(2)设P(x1,f(x1)),Q(x2,f(x2))是函数f(x)图象上任意两点,0<x1<x2,且存在实数x3>0,使得f(x3)=,证明:x1<x3<x2

查看答案和解析>>

已知函数f(x)=a(x-)-lnx,
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围。

查看答案和解析>>


同步练习册答案