23.已知两曲线...(1)求两曲线的交点坐标, 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。   (I)求此双曲线的方程;   (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。

查看答案和解析>>

(本小题满分12分)已知双曲线,焦点F2到渐近线的距离为,两条准线之间的距离为1。  (I)求此双曲线的方程;  (II)过双曲线焦点F1的直线与双曲线的两支分别相交于A、B两点,过焦点F2且与AB平行的直线与双曲线分别相交于C、D两点,若A、B、C、D这四点依次构成平行四边形ABCD,且,求直线AB的方程。

查看答案和解析>>

(本小题满分12分)

已知两点满足条件的动点P的轨迹是曲线E,直线 l y= kx-1与曲线E交于AB两个不同点。

(1)求k的取值范围;(2)如果求直线l的方程.

查看答案和解析>>

(本小题满分12分)
已知双曲线的离心率为2,焦点到渐近线的距离等于,过右焦点的直线
交双曲线于两点,为左焦点,
(Ⅰ)求双曲线的方程;
(Ⅱ)若的面积等于,求直线的方程.

查看答案和解析>>

(本小题满分12分)

 已知双曲线的离心率为,且过点P().

 (1)求双曲线C的方程;

 (2)若直线与双曲线C恒有两个不同的交点A,B,且  

(其中O为原点),求k的取值范围.

 

查看答案和解析>>

一、填空题

1.   2.,    3.    4.2   5.1     6.

7.50   8.  9.-2   10.    11.2     12.

13.2     14.

二、解答题

15[解]:证:设   ,连 。                    

 ⑴  ∵为菱形,   ∴ 中点,又中点。

      ∴                              (5分) 

      又 , (7分)

 ⑵ ∵为菱形,   ∴,              (9分)

   又∵    (12分)

   又     ∴

         ∴             (14分)

16[解]:解:⑴ ∵ , ∴  ,∴ (1分)

       又                         (3分)

        ∴

        ∴ 。                        (6分)

        ⑵ (8分)

        ∵,∴

        ∴                (10分)

         

             (13分)

          (当时取“”)   

所以的最大值为,相应的    (14分)

17.解:⑴直线的斜率中点坐标为

        ∴直线方程为     (4分)

        ⑵设圆心,则由上得:

                             ①      

        又直径,,

         

           ②       (7分)

由①②解得

∴圆心                  

∴圆的方程为  或  (9分)                         

 ⑶  ,∴ 当△面积为时 ,点到直线的距离为 。                   (12分)

 又圆心到直线的距离为,圆的半径   

∴圆上共有两个点使 △的面积为  .  (14分)

18[解] (1)乙方的实际年利润为:  .   (5分)

时,取得最大值.

      所以乙方取得最大年利润的年产量 (吨).…………………8分

 (2)设甲方净收入为元,则

学科网(Zxxk.Com) 将代入上式,得:.   (13分)

    又

    令,得

    当时,;当时,,所以时,取得最大值.

    因此甲方向乙方要求赔付价格 (元/吨)时,获最大净收入.  (16分)

 

19. 解:⑴ 由 ,令 (2分)

   ∴所求距离的最小值即为到直线的距离(4分)

                      (7分)

   ⑵假设存在正数,令 (9分)

   由得:  

   ∵当时, ,∴为减函数;

   当时,,∴ 为增函数.

   ∴         (14分)

   ∴

的取值范围为        (16分)

 

20. 解:⑴由条件得:  ∴  (3分)

     ∵为等比数列∴(6分)

      ⑵由   得            (8分)

     又   ∴                    (9分)

 ⑶∵

          

(或由

为递增数列。                              (11分)

从而       (14分)

                            (16分)

附加题答案

21.         (8分)

22. 解:⑴①当时,

       ∴                                                      (2分)

        ②当时,

       ∴                                                 (4分)

        ③当时,

       ∴                                                (6分)

       综上该不等式解集为                                   (8分)

23. (1);       (6分)

(2)AB=              (12分)

24. 解: ⑴设为轨迹上任一点,则

                                             (4分)

       化简得:   为求。                                (6分)

       ⑵设

         ∵  ∴                        (8分)

         ∴ 为求                                   (12分)


同步练习册答案