(Ⅲ)过点作两条相异直线分别与相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线和是否平行?请说明理由. 查看更多

 

题目列表(包括答案和解析)

已知⊙过点,且与⊙:关于直线对称.(Ⅰ)求⊙的方程;(Ⅱ)设为⊙上的一个动点,求的最小值;(Ⅲ)过点作两条相异直线分别与⊙相交于,且直线和直线的倾斜角互补,为坐标原点,试判断直线是否平行?请说明理由.

查看答案和解析>>

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(Ⅰ)求⊙C的方程;
(Ⅱ)设Q为⊙C上的一个动点,求
PQ
MQ
的最小值;
(Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y-2)2=r2(r>0)关于直线x+y+2=0对称.
(1)设Q为⊙C上的一个动点,求
PQ
MQ
的最小值;
(2)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?并说明理由.

查看答案和解析>>

已知圆过点,且与圆关于直线对称.

(1)求圆的方程;

(2)设为圆上一个动点,求的最小值;

(3)过点作两条相异直线分别与圆相交于,且直线直线的倾斜角互补,为坐标原点,试判断直线是否平行,并说明理由.

 

查看答案和解析>>

(14分)已知圆过点且与圆M:关于直线对称

  (1)判断圆与圆M的位置关系,并说明理由;

  (2)过点作两条相异直线分别与圆相交于

   ①若直线与直线互相垂直,求的最大值;

   ②若直线与直线轴分别交于,且,为坐标原点,试判断直线是否平行?请说明理由.

 

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,计70分.

1.      2.       3.     4.      5.68      6. 4      7. 7      8.

9.     10. 若点P在两渐近线上的射影分别为,则必为定值

11.②③          12.         13.1        14.

 

二、解答题:本大题共6小题,计90分.

15. 解: (Ⅰ)因为,∴,则…………………………………………(4分)

  ∴……………………………………………………………………………(7分)

   (Ⅱ)由,得,∴…………………………………………(9分)

   则 …………………………………………(11分)

由正弦定理,得,∴的面积为………………………(14分)

16. (Ⅰ)解:因为,,且,

所以……………………………………………………………………………………………(4分)

   又,所以四边形为平行四边形,则……………………………………(6分)

   而,故点的位置满足………………………………………………………(7分)

(Ⅱ)证: 因为侧面底面,,且,

所以,则…………………………………………………………………(10分)

   又,且,所以 …………(13分)

   而,所以…………………………………………………(14分)

17. 解:(Ⅰ)因为,所以的面积为()………………………(2分)

   设正方形的边长为,则由,得,

解得,则…………………………………………………………………(6分)

   所以,则 ………………(9分)

   (Ⅱ)因为,所以……………(13分)

   当且仅当时取等号,此时.所以当长为时,有最小值1…………………(15分)

18. 解:(Ⅰ)设圆心,则,解得…………………………………(3分)

则圆的方程为,将点的坐标代入得,故圆的方程为………(5分)

(Ⅱ)设,则,且…………………………(7分)

==,所以的最小值为(可由线性规划或三角代换求得)…(10分)

(Ⅲ)由题意知, 直线和直线的斜率存在,且互为相反数,故可设,

,由,得 ………(11分)

  因为点的横坐标一定是该方程的解,故可得………………………………(13分)

  同理,,所以=

  所以,直线一定平行…………………………………………………………………………(15分)

19. (Ⅰ)解:因为…………………………………(2分)

;由,所以上递增,

上递减 …………………………………………………………………………………………(4分)

上为单调函数,则………………………………………………………(5分)

(Ⅱ)证:因为上递增,在上递减,所以处取得极小值(7分)

 又,所以上的最小值为 …………………………………(9分)

 从而当时,,即…………………………………………………………(10分)

(Ⅲ)证:因为,所以即为,

   令,从而问题转化为证明方程=0

上有解,并讨论解的个数……………………………………………………………………(12分)

   因为,,所以

   ①当时,,所以上有解,且只有一解 ……(13分)

②当时,,但由于,

所以上有解,且有两解 …………………………………………………………(14分)

③当时,,所以上有且只有一解;

时,,

所以上也有且只有一解…………………………………………………………(15分)

综上所述, 对于任意的,总存在,满足,

且当时,有唯一的适合题意;当时,有两个适合题意…………(16分)

(说明:第(Ⅱ)题也可以令,,然后分情况证明在其值域内,并讨论直线与函数的图象的交点个数即可得到相应的的个数)

20.(Ⅰ)解:由题意得,,所以=……………………(4分)

(Ⅱ)证:令,,则=1………………………………………………(5分)

所以=(1),=(2),

(2)―(1),得=,

化简得(3)……………………………………………………………(7分)

(4),(4)―(3)得 …………(9分)

在(3)中令,得,从而为等差数列 …………………………………………(10分)

(Ⅲ)记,公差为,则=…………………(12分)

,

…………………………………………(14分)

,当且仅当,即时等号成立……………(16分)

 

 

数学附加题部分

21.A.(几何证明选讲选做题)

解:因为PB=PD+BD=1+8=9,=PD?BD=9,PA=3,AE=PA=3,连结AD,在中,得……(5分)

,所以 …………………………………………………………………(10分)

B.(矩阵与变换选做题)

解: (Ⅰ)设,则有=,=,

所以,解得 …………………………………………………………(4分)

所以M=,从而= ………………………………………………………………(7分)

(Ⅱ)因为且m:2

所以2(x+2y)-(3x+4y)=4,即x+4 =0,这就是直线l的方程 ………………………………………(10分)

C.(坐标系与参数方程选做题)

解:将极坐标方程转化为普通方程:……………………………………………(2分)

   可化为…………………………………………………………(5分)

上任取一点A,则点A到直线的距离为

,它的最大值为4 ……………………………(10分)

D.(不等式选讲选做题)

证:左=…(5分)

  ……………………(10分)

22.解:以OA、OB所在直线分别x轴,y轴,以过O且垂直平面ABCD的直线为z轴,建立空间直角坐标系,则…(2分)

(Ⅰ)设平面PDB的法向量为

同步练习册答案