椭圆E的方程为:. -------- 8分2 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
长轴为8离心率e=
3
2

(1)求椭圆C的标准方程;
(2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程.

查看答案和解析>>

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>

(本题18分,第(1)小题4分;第(2)小题6分;第(3)小题8分)

如图,已知椭圆E,焦点为,双曲线G的顶点是该椭圆的焦点,设是双曲线G上异于顶点的任一点,直线与椭圆的交点分别为ABCD,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为.

(1)求椭圆E与双曲线G的方程;

(2)设直线的斜率分别为,探求的关系;

(3)是否存在常数,使得恒成立?若存在,试求出的值;若不存在,

请说明理由.

查看答案和解析>>

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

查看答案和解析>>


同步练习册答案